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Occipitotemporal Category Representations Are Sensitive to
Abstract Category Boundaries Defined by Generalization
Demands
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Categorization involves organizing perceptual information so as to maximize differences along dimensions that predict class member-
ship while minimizing differences along dimensions that do not. In the current experiment, we investigated how neural representations
reflecting learned category structure vary according to generalization demands. We asked male and female human participants to switch
between two rules when determining whether stimuli should be considered members of a single known category. When categorizing
according to the “strict” rule, participants were required to limit generalization to make fine-grained distinctions between stimuli and the
category prototype. When categorizing according to the “lax” rule, participants were required to generalize category knowledge to highly
atypical category members. As expected, frontoparietal regions were primarily sensitive to decisional demands (i.e., the distance of each
stimulus from the active category boundary), whereas occipitotemporal representations were primarily sensitive to stimulus typicality
(i.e., the similarity between each exemplar and the category prototype). Interestingly, occipitotemporal representations of stimulus
typicality differed between rules. While decoding models were able to predict unseen data when trained and tested on the same rule, they
were unable to do so when trained and tested on different rules. We additionally found that the discriminability of the multivariate signal
negatively covaried with distance from the active category boundary. Thus, whereas many accounts of occipitotemporal cortex empha-
size its important role in transforming visual information to accentuate learned category structure, our results highlight the flexible
nature of these representations with regards to transient decisional demands.
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Occipitotemporal representations are known to reflect category structure and are often assumed to be largely invarjant with
regards to transient decisional demands. We found that representations of equivalent stimuli differed between strict and lax
generalization rules, and that the discriminability of these representations increased as distance from abstract category bound-
aries decreased. Our results therefore indicate that occipitotemporal representations are flexibly modulated by abstract decisional

factors.
J

ignificance Statement

goals (Norman and O’Reilly, 2003; Roy et al., 2010; Seger and
Miller, 2010; Chumbley et al., 2012; Collins and Frank, 2013). For
instance, when using a vending machine, it may be necessary to
use a strict generalization threshold to distinguish “dimes” from

Introduction
Organisms must be able to flexibly adjust the degree of general-
ization applied to category knowledge to accomplish different
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“non-dimes,” but when cleaning out your desk, it may be neces-
sary to use a more lenient threshold to distinguish “coins” from
“non-coins.” In the present study, we sought to investigate how
perceptual representations differ between generalization strate-
gies. We did so by having participants learn and apply multiple
generalization thresholds during the performance of an A/notA
categorization task (see Fig. 1), in which behavioral performance
typically varies according to the degree of perceptual similarity
between visual stimuli and a prototype, and in which knowledge
is often difficult to verbalize.

Although A/notA tasks superficially resemble A/B catego-
rization tasks (in which participants categorize stimuli into
two categories), neurobiological differences have been observed
between them. For instance, although deficits in A/B perfor-
mance are observed in healthy aging and in neuropsychological
disorders affecting the hippocampus, A/notA categorization is
typically preserved (Knowlton and Squire, 1993; Zaki, 2003; Bo-
zoki et al., 2006; Glass et al., 2012). Additionally, whereas A/B
tasks tend to elicit activity in frontoparietal and hippocampal
regions (Seger et al., 2000; Zeithamova et al., 2008), A/notA tasks
tend to elicit activity in visual cortices and in the basal ganglia
(Reber et al., 1998, 2003; Aizenstein et al., 2000; Summerfield and
Koechlin, 2008; Zeithamova et al., 2008). Regions associated with
A/notA categorization thus closely resemble those associated
with perceptual priming and repetition suppression (Wiggs and
Martin, 1998; Koutstaal et al., 2001; Henson, 2003), as well as the
theorized neurobiological substrate of the perceptual representa-
tion system (Schacter, 1990; Reber and Squire, 1999; Ashby and
O’Brien, 2005; Casale and Ashby, 2008).

In typical instantiations of the A/notA task, participants learn
to apply a single generalization threshold (but see Nosofsky et al.,
2012), and so neural signals reflecting representational factors
(Strange et al., 2005; Seger et al., 2011, 2015; Davis et al., 2014),
which vary with distance from the prototype, and decisional fac-
tors (Grinband et al., 2006; Kayser et al., 2010; White et al., 2012),
which vary with distance from the category boundary, are con-
founded, in that decisional difficulty increases with distance from
the category prototype. In the current experiment, participants
categorized filled dot prototype stimuli as category members or
nonmembers according to “strict” and “lax” generalization rules
(see Fig. 1). For the lax rule, participants used a lenient criterion
that allowed all stimuli formed as distortions of the prototype
into the category while excluding random exemplars. For the
strict rule, participants used a strict criterion which allowed only
the prototype stimulus into the category while excluding all other
exemplars (both low- and high level distortions and randomly
formed stimuli). The two rules allowed us to differentiate effects
associated with distance from the prototype, from effects associated
with distance from the bound. This allowed us to differentiate rep-
resentational factors from decisional factors and to investigate
whether category representations vary according to generalization
demands.

Materials and Methods

Participants

Eighteen participants (age 20.7 = 2.5 years; mean * SD; 10 female) were
recruited from the undergraduate population at South China Normal
University. All were paid for their participation and met criteria for MR
scanning. Two participants were excluded for excessive motion dur-
ing the scan (>2 mm in any of the ordinal directions, or 2 degrees
pitch, roll, or yaw), resulting in a total of 16 participants included in
the final analyses.

Braunlich et al. ® Occipitotemporal Generalization

Stimuli

We generated “filled” dot-prototype stimuli at four levels of distortion
(Fig. 1). This approach of making complex polygons from dot patterns
has been used successfully in previous category learning studies (Posner
and Keele, 1968; Homa et al., 1981; Smith et al., 2005). Three stimulus
sets based on a different prototype were constructed, and each subject
learned one of these randomly assigned sets. Prototypes were formed
from nine points, or dots, pseudo-randomly assigned to locations within
a23 X 23 grid. To increase visual salience, the nine dots were connected
with lines, and the resultant shape was then filled with solid blue color.
We designed the distorted exemplars according to a well-established
procedure (Posner et al., 1967; Smith and Minda, 2001), which allowed
us to create a large number of unique exemplars. After defining the
category prototypes, this involved perturbing the locations of the dots by
first identifying 12 “rings” surrounding each dot. Each ring was com-
prised of the cells surrounding the previous ring; therefore, the dot itself
comprised a single cell, the adjacent ring comprised 8 cells, and the
outermost ring comprised 88 cells. Although a dot had equal probability
of moving to any cell within each ring, the probability of a dot moving to
a ring decreased with distance from its original position. Using this
framework, the uncertainty of the dot positions of a particular stimulus,
s, can be defined according to its entropy, H as follows:

H(s) = — Xy pi* loga(py) (1)

where K is the number of cells that a point could be located and p, is the
probability that a point is within a particular cell, k.

We first generated 2000 exemplars at each entropy level: low distortion
exemplars were created with 3.5 bits per dot, high distortion exemplars
were created with 6.5 bits per dot, and random exemplars were generated
without regards to the template, so as to be perceptually distinct. Thus, if
we describe the prototype as a point in 18-dimensional space, through
this procedure, we produced three stimulus “clouds” surrounding this
point, such that average Euclidean distance moved per dot per stimulus
increased from the low distortion to the high distortion stimulus set, and
from high distortion set to random stimulus set, but such that there was
considerable variance within each set (Fig. 1C). An attractive character-
istic of dot prototype stimuli is that the psychological distance, dis, be-
tween stimuli has been shown to follow a logarithmic function of the
average Euclidean distance moved by each dot (Posner et al., 1967; Smith
and Minda, 2001):

diyr = log(1 + d(prototype, exemplar)) (2)

where d( prototype, exemplar) represents the average Euclidean distance
moved per dot between an exemplar and the prototype. To reduce the
variance within each stimulus set, we selected 300 exemplars from the
low uncertainty stimulus set and 300 stimuli from the high uncertainty
stimulus set that fell closest to a specific distance from the prototype (Fig.
1D), and we selected 300 random stimuli that were farther from the
prototype than the farthest high distortion exemplar. Through pilot test-
ing, we adjusted these distances to minimize differences in behavioral
performance (accuracy and reaction time) between the two rules. As
there was greater variability within the random stimulus set, to accurately
model effects associated with these stimuli, we used Equation 2 to para-
metrically define stimulus distances in the neuroimaging models used for
voxel selection. To estimate the location of each decision bound, we
calculated the point midway between the clusters closest to it (i.e., for the
strict rule, the optimal category boundary lay midway between the pro-
totype and the mean of the low distortion exemplars; for the lax rule, it lay
midway between the means of the high-entropy and random exemplars).

Procedure

Training session. Participants were told that there would be two different
conditions, strict and lax, and that each would be indicated by an instruc-
tion cue and a distinctive background color. They were further told that,
in the strict condition, they should be careful to exclude any stimuli that
might not be members. In the lax condition, they should try not to miss
any potential category members and only exclude stimuli that were un-
related to the category. During the fMRI study, participants were given
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Figure1.

A, Participants categorized dot-prototype stimuli at four levels of distortion, according to two decision rules (indicated by red vertical lines). In the lax condition (top, gray), participants

had to categorize all prototype distortions as category members, excluding only random stimuli. In the strict condition (bottom, orange), participants had to categorize only the prototype stimuli as
category members, excluding all other stimuli. This design dissociates perceptual generalization (distance from the prototype) from distance from category boundary. When the strict bound was in
play, the random stimuli were farthest from the categorization boundary, whereas when the lax bound was in play, the prototype stimuli were farthest from the boundary. Each of the four distortion
levels neighbored one of the decision boundaries: the prototype and low distortion stimuli were closest to the strict bound, whereas the high distortion and random stimuli were closest to the lax
bound. The position of each stimulus on the screen was spatially jittered in the x and y planes, and the mapping between background color and categorization rule was randomized between
participants. B, On each trial, participants saw a stimulus, a cue at the bottom of the screen indicating the current rule, and two response-location cues (“-+,” which indicated a stimulus belonged
“inside the category”; and “—,” which indicated “outside of the category”), which were pseudo-randomly assigned to the left versus right bottom corners of the screen on each trial. ¢, We first
generated 2000 stimuli for each of the three category prototypes (P1, P2, and P3) at two entropy levels (low: 3.5 bits per dot, and high: 6.5 bits per dot). y axis: Log Euclidean distance from the
prototype. D, To control the visual similarity between stimuli of different distortion levels, we included only the 300 exemplars closest to a specific distance from each prototype at each distortion
level. Through pilot testing, we adjusted this distance to minimize behavioral differences between tasks. The random exemplars (data not shown) were created without consideration of their

distance from the prototype.

written instructions in English and spoken instructions in Mandarin
Chinese. All participants had studied English previously; however,
Chinese-speaking research assistants discussed the instructions with par-
ticipants in Chinese and answered any questions before beginning testing
procedures to ensure comprehension. After instructions, participants
learned to categorize by these rules through trial and error. On each trial,
the active rule was indicated by an instructional cue presented below the
stimulus. During pilot testing in the United States, the instructional cues
were the words: “strict” and “lax.” However, as the final fMRI experiment
took place in China, the equivalent Chinese characters were used instead:
strict: JE (pinyin transliteration: yan, tone2) and lax j;\ (pinyin trans-
literation: song, tonel). To mitigate the possibility that participants
might not notice switches between cues, each rule was also indicated by
the background color of the screen (orange or gray). To avoid possible
visual confounds associated with background color, the mapping be-
tween rule and color was counterbalanced across participants.

To avoid confounding motor response with decision (member or
nonmember), we cued participants as to which hand response to use for
each response on each trial. Each stimulus display included two response
cues: a “+” and a “—” in the lower left and right corners. The “+”
indicated that a stimulus was a category member, whereas the “—” indi-
cated that a stimulus was a category nonmember. The locations of the
“+” and “—7 signs were randomized on each trial but were counterbal-
anced across rules, distortion levels, and categories. During training, the
word “Correct!” was shown for 0.75 s in green font, following correct
responses. Following incorrect responses, the word “Wrong” was shown
for 0.75 s in red font. If no response was made within the 2.25 s response
window, the words “Too slow” were displayed in black font. No feedback
was provided in the scanner.

During training, a greater number of stimuli near the category bound-
aries were included so that participants could efficiently gain experience
with the category boundaries associated with each rule. Thus, while the



7634 - ). Neurosci., August 9, 2017 - 37(32):7631-7642

probability of category member versus nonmember was held at 50% for
each rule, when learning the strict rule, there were three low distortion
exemplars for every high distortion or random exemplar; and when
learning the lax rule, there were three high distortion stimuli for every
low distortion or prototype exemplar. During scanning, we adjusted the
proportion of stimuli within each distortion level so that, for each rule,
we could have the same number of trials within each distortion level. This
altered the proportion of stimuli belonging within the category for each
rule but was necessary to compare representations of stimulus distortion
between rules.

So that we could unpredictably switch between rules in the scanner (to
mitigate effects associated with anticipation of rule switches and to be
able to directly compare rules), we adopted a training protocol that en-
couraged participants to frequently switch between rules. Participants
trained on five alternating task blocks. In each block, participants trained
until reaching a 90% accuracy criterion over k trials on each task. After
each successful block, k decreased by 5 trials; so while participants had to
complete (at least) 26 trials in the first block, they only had to complete 6
trials in the final block if they were 100% accurate. The criterion window
was reset after [k + 5] trials; and if participants failed to achieve the
accuracy criterion within this window, they had to complete at least
another k trials. After completing the initial training, participants com-
pleted a brief task (100 trials), which included temporal jitter and ex-
cluded feedback, so as to be as similar as possible to the actual scanner
task.

Scanning session. Participants performed the task during four 10 min
scanner runs. Each participant performed 368 trials in total. To mitigate
effects associated with the prediction of impending rule switches, partic-
ipants switched unpredictably between rules every 4, 6, 8, or 10 trials. The
trial format was identical to training, except feedback was not included
(to isolate representations associated with stimulus and response). The
intertrial interval was jittered according to a positively skewed geometric
distribution ranging from 2.25 to 9.75 s (mean 4.06 s). The efficiency of
the design was optimized using custom software. Participants made re-
sponses via magnet compatible response boxes with fingers of their right
and left hands.

Image acquisition

Images were obtained with a 3.0 tesla MRI scanner (Siemens Tim Trio) at
the Brain Imaging Center at South China Normal University. The scan-
ner was equipped with a 12-channel head coil. Structural images were
collected using a T1-weighted MP-RAGE sequence (256 X 256 matrix;
FOV, 256 mm; 192 1 mm slices). Each scanning session included four 10
min functional runs, each of which involved the collection of 400 whole-
brain volumes. Functional images were reconstructed from 25 axial
oblique slices obtained using a T2*-weighted 2D echoplanar sequence
(repetition time, 1500 ms; echo time, 30 ms; flip angle, 76; FOV, 220 mmy;
64 X 64 matrix; 4.5-mm-thick slices). The first three volumes, which
were collected before the magnetic field reached a steady state, were
discarded.

Neuroimaging analyses
Preprocessing. Preprocessing was implemented using SPM12 (version
6470), and for both the univariate and multivariate analyses consisted of
slice time correction to the middle slice, motion correction, and coregis-
tration. While the multivariate pattern analyses (MVPA) were based on
the unsmoothed images in each participant’s native space, the functional
images were additionally warped to MNI space (using the deformation
fields derived from the anatomical segmentation), and smoothed with a
6 mm FWHM Gaussian kernel for univariate analyses and for group-
level MVPA. Time-series were filtered using a 128 s high-pass filter.
Univariate analyses. We modeled each event with its precise duration
(stimulus onset to response and simultaneous stimulus offset), an ap-
proach that is known to be more sensitive to events with variable dura-
tions than constant epoch or variable amplitude impulse models
(Grinband et al., 2008). In addition, as mismodeling of the HRF can bias
estimates of HRF amplitude, we modeled the HRF with a double-gamma
HREF function and included both the temporal and dispersion derivatives
in the first-level design matrices. We combined this information using a
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low-dimensional parameterization, which allows separately estimating
the amplitude, time-to-peak, and width of the hemodynamic response
for each voxel, condition, and subject (Wager et al., 2005). We did not
find differences in the time-to-peak or width parameters between condi-
tions, and thus report only analyses related to the amplitude of the HRF.
To minimize effects associated with differences in behavioral strategy,
univariate statistical analyses were limited to correct trials (defined as
being in concordance with the current decision bound). To control the
familywise error rate at the group level, we estimated the null distribution
by randomly flipping the signs associated with the subject-level contrast
maps 10,000 times (Eklund et al., 2014, 2016) using the BROCCOLI
software package. For the univariate analyses, we used a cluster-based
threshold (initial cluster-forming threshold: p < 0.001, g < 0.05). For the
MVPA, the familywise error rate was corrected at the voxel level (mini-
mum threshold: p < 0.01).

Multivariate analyses. We first used the least-squares separate proce-
dure (Mumford et al., 2012) to obtain individual trial 8- and #-statistic
images. Unlike the univariate analyses, we did not exclude incorrect tri-
als, and we included an equal number of trials for each distortion level
within each rule. We mitigated effects associated with reaction times
through a two step procedure (Todd et al., 2013). We first modeled each
event with a duration equal to the reaction time before convolution with
the HRF, which has the effect of minimizing effects of systematic mis-
modeling, and thus mitigating confounds associated with reaction times
in MVPA. We then used regression to remove the effect of reaction time
from the least-squares separate statistical maps before analysis. We addi-
tionally repeated the analysis illustrated in Figure 6E after removing the
minimum number of trials, such that the mean reaction time was either
equal between rules for each distortion level or switched direction from
the original results; this yielded the same qualitative pattern of results and
confirmed that the effects were not driven by differences in reaction time.

To identify neighborhoods of voxels representing distance from the
prototype or distance from the decision bound, we used a searchlight
approach (sphere radius 10 mm) (Kriegeskorte et al., 2006), in conjunc-
tion with linear support vector regression (SVR). We implemented the
searchlight using custom code based on the Nilearn python package
(Abraham et al., 2014) and implemented the SVR analysis using the
SciKit-Learn machine learning package for python (Pedregosa et al.,
2011), setting the SVR penalty parameter, C, to 0.01 based on the results
from a separate dataset. We used a fourfold cross-validated approach
in which we repeatedly trained the model on 3 of the 4 runs, and tested
the accuracy of the model on the held-out data (each time holding out
data from a different scanner run). For group-level analyses, we Fisher
z-transformed the Pearson correlation values, smoothed the resultant
maps with a 6 mm FWHM Gaussian kernel, and then performed a
permutation test (10,000 sign-flips of the individual subject z-statistic
maps), controlling the familywise error rate at the voxel level.

We performed additional permutation tests to confirm that we could
decode information from the individual ROIs (Etzel et al., 2013) and to
test specific hypotheses about the nature of the representation. Although
the details of the specific tests are described with the results (below), each
permutation test involved using a support vector machine (with C =
0.01) in conjunction with the same fourfold, leave-one-run-out cross-
validation procedure used in the searchlight analysis. We compared the
predictive accuracy of the support vector machine to that of a null dis-
tribution, which was estimated by repeating the analysis 500 times, each
time permuting the labels of the training (but not the test) data. We then
transformed the resultant p values to z scores and performed a single-
sample ¢ test to estimate statistical significance at the group level.

Results

Behavioral results

We examined performance across the strict and lax rules, with the
stimuli associated with each rule considered in relation to its
respective boundary (three levels: close, middle, and far; Fig. 2A)
and to stimulus distance in perceptual space independent of
categorization rule (four levels: prototype, low distortion, high
distortion, and random; Fig. 2B). A 2 X 3 repeated-measures
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ANOVA with factors of rule (strict and lax) and distance from the
category boundary (close, middle, and far) indicated that subjects
had a difference in accuracy between the two rules (percentage
correct for the strict condition 95 * 5%j; percentage correct for
the lax condition 90 * 10%) (F,, ;5, = 4.7, p = 0.05, n° = 0.24).
Accuracy increased with distance from the decision boundary
(F2518.75) = 39.06, p < 0.01, n* = 0.72). The interaction between
rule and boundary distance was not significant (F, 3, 197¢) = 1.71,
p =021,71%=0.1). A2 X 4 repeated-measures ANOVA with
factors of rule condition (strict and lax) and stimulus distortion
level (prototype, low, high, and random) further indicated that
accuracy differed depending on stimulus distortion level (F; 45) =
6.21,p < 0.01, n* = 0.29).

A visual inspection of Figure 2B indicates that the difference
between strict and lax rule performance was likely due to high
distortion stimuli in the lax condition. An examination of the
individual subject means reveals large individual differences.
Nine subjects maintained high levels of accuracy (=80%), but 3
subjects performed near 50% (indicating random accuracy) and
an additional 4 subjects performed at below 40% accuracy, con-
sistently judging high distortion stimuli as out of the category
rather than in the category. This pattern can be interpreted as
these 4 subjects shifting to categorizing using a decision boundary
that fell between the low and high distortion stimuli rather than
the trained boundary between the high distortion and random
stimuli; this boundary change was likely enabled by the lack of
corrective feedback during the testing phase in the scanner. As we

were interested in whether the boundary setting influenced the
neural expression of perceptual information, we did not discard
data from these participants but instead conducted post hoc anal-
yses to investigate the effect. We did not find effects associated
with these participants (or with idiosyncratic variation in behav-
ioral performance across the group as a whole), and so do not
discuss these results further, and did not exclude these partici-
pants from the analyses.

To investigate effects associated with reaction time, we con-
ducted two repeated-measures ANOVAs. In the first, we binned
trials according to their distortion level, resulting in a 2 X 4
repeated-measures ANOVA with factors of rule condition (strict
and lax) and stimulus distortion level (prototype, low, high, and
random). In the second, we binned trials based on distance from
the active category boundary, resulting in a 2 X 3 repeated-
measures ANOVA with factors of rule (strict and lax) and dis-
tance from the category boundary (close, middle, and far). To
correct for violations of sphericity, we report Greenhouse-
Geisser—adjusted degrees of freedom where appropriate. We con-
ducted post hoc Tukey HSD tests where relevant. In the first
ANOVA examining stimulus distortion, we found that the main
effect of rule was not significant (F, 5, = 1.89, p = 0.2, n° =
0.11). The effect of distortion level was significant (F(, o, 30,3 =
15.1, p <0.01, 1? = 0.5), such that reaction times were faster for
the prototype (1.12 = 0.2) and for random exemplars (1.05 =
0.2) than for the low distortion (1.2 = 0.18; prototype vs low
distortion: = —3.11, p(rykey) = 0.02, low distortion vs random:
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Regions sensitive to distance from the decision bound across strict and lax trials. Warm colors represent increasing distance (i.e., increasing decisional confidence). Cool colors represent

decreasing distance (i.e., increasing decisional uncertainty). y axes indicate mean percentage signal change. x axes indicate distortion level. Separate lines indicate decision rule: blue represents lax;

green represents strict. Error bars indicate SEM.

t = 5.84, P(rukey) < 0.01) and high distortion stimuli (1.19 = 0.22;
prototype vs high distortion: £ = —2.87, prye,) = 0.03, high
distortion vs random: t = 5.6, p(yiey) < 0.01). The interaction
between rule and distortion level was also significant (F, og 3125, =
27.15,p < 0.01, n* = 0.64), such that reaction times tended to be
slower for distortion levels neighboring the active category
boundary.

In the second repeated-measures ANOVA, examining dis-
tance from the active category boundary, the main effect of rule
was again not significant (F(; ;5 = 3.93,p = 0.07,”> = 0.21). The
main effect of distance from the category boundary was signifi-
cant (F(; 5,10.46) = 49.8, p < 0.01, n* = 0.77), such that reaction
times decreased with distance from the boundary (low distance:
1.23 = 0.19; medium distance: 1.11 = 0.15; high distance: 0.99 =
0.13). Tukey’s HSD tests indicated a significant difference be-
tween low and medium distance stimuli (£ = 5.2, p¢ryiey) < 0.01)
and a significant difference between medium and high-distance
stimuli (£ = 0.98, prykey) < 0.01). The interaction between rule
and distance was not significant (F, 54,3, = 2.3,p = 0.14,n° =
0.13).

Neuroimaging results

Distance from decision boundary

To investigate decision processes common to both categorization
rules, we investigated parametric contrasts for the effects associ-
ated with distance from the strict and lax category boundaries.
Increasing distance from the categorical boundary is sometimes
termed “decisional confidence” (e.g., Sanders et al., 2016; Braun-

lich and Seger, 2016) as it positively covaries with behavioral
accuracy. It should be noted, however, that this normative esti-
mate of decisional confidence differs from subjective estimates of
confidence, which are sensitive to additional sources of bias and
noise and which may involve separate representations and/or
neural systems (Paul et al., 2015).

As shown in Figure 3 and Table 1, decisional confidence was
associated with lateral inferior parietal activity extending from
the angular gyri to the temporal-parietal junction and superior
temporal gyri. Medial frontoparietal activity was found across the
cuneus and posterior cingulate and the ventromedial prefrontal
cortex. In addition, activity extended along the bilateral superior
and middle temporal gyri, similar to that which has been reported
in previous categorization studies (Zeithamova et al., 2008; Paul
et al,, 2015). Decisional uncertainty was associated with activity
within bilateral clusters along the intraparietal sulcus immedi-
ately superior to the regions associated with decisional confi-
dence. Counter to our predictions, we did not find that regions of
the “salience” network (anterior cingulate and frontal opercu-
lum/anterior insula) covaried with conflict (e.g., Seger et al.,
2015). To investigate this effect, we performed an exploratory
analysis at a lower statistical threshold and found that these
regions showed subthreshold patterns corresponding to our
prediction.

To further explore the direction of these effects, we examined
the percentage signal change within each of these regions across
the four levels of distortion and two rule conditions (strict and
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Table 1. Parametric modulators: distance from the bound and distance from the
prototype’

Region Size X y z
Increase with distance from decision bound
L angular gyrus 2296 —50 —52 46
L middle temporal gyrus —60 —10 —20
R superior temporal gyrus —40 —32 22
R anqgular gyrus 2686 58 —50 32
R middle temporal gyrus 60 —12 —24
R superior temporal gyrus 54 —32 2
B cuneus 4092 8 —74 28
B posterior cingulate 0 —38 30
B supplementary motor area 4 —20 64
L superior and middle frontal gyri 1017 —20 24 42
B ventromedial frontal cortex 1824 4 37 2
R superior and middle frontal gyri 749 24 28 4
Decrease with distance from decision bound
Lintraparietal sulcus 708 —44 —40 46
Lintraparietal sulcus, superior parietal —18 —68 54
L intraparietal sulcus, superior parietal 1125 20 =70 48
L intraparietal sulcus, supramarginal 32 —40 42
Increase with distance from prototype
R lingual and fusiform gyri 442 26 —62 —6
L lingual and fusiform gyri 550 —28 —58 —14
Decrease with distance from prototype
No activated clusters

“Model-based univariate results for correct trials only. The familywise error rate for each contrast was controlled at
the cluster level using a nonparametric permutation testing approach (initial cluster-forming threshold: p < 0.001,
q<0.05).

lax). To avoid circular analyses, these data were not subjected to
nonorthogonal post hoc statistical tests. As can be seen in Figure 3,
the intraparietal sulci (greater activity closer to the bound) exhib-
ited an expected pattern: for the strict rule, activity was greatest
for the prototype and low distortion stimuli adjacent to the strict
decision bound, and lowest for the random stimuli furthest from
the decision bound. In contrast, for lax stimuli, activity was great-
est for the high distortion stimuli near the bound, and lower for
the prototype and low distortion stimuli further from the bound.
In the lax condition, activity for the random stimuli was lower
than for the high distortion stimuli; this could be due to the
greater variability within the random stimuli in regard to distance
from the prototype. Regions identified as having activity increas-
ing with distance from the category bound (middle and superior
frontal gyri, angular gyri, ventromedial prefrontal, and precu-
neus) overall showed the expected pattern that was opposite to
that found for the intraparietal sulcus: greater activity for the high
and random stimuli when using the strict rule and greater activity
for prototype stimuli when using the lax rule.

Distance from the prototype

As shown in Figure 4, activity in the inferior temporal regions,
including the bilateral lingual and fusiform gyri, covaried with
distance from the prototype. Although these voxels were selected
based on this effect, visual inspection of the plots suggested an
interaction between rule and distortion level. We therefore con-
ducted a post hoc analysis (Friston et al., 2006; Kriegeskorte et al.,
2009), which was orthogonal to the contrast used for voxel selec-
tion. A repeated-measures ANOVA indicated that the interaction
was significant for both the left (F5 45, = 9.48, p < 0.01, n° =
0.39) and right (F(; 45, = 11.76, p < 0.01, n*> = 0.44) fusiform
gyri, suggesting that the visual characteristics of the stimuli were
processed differently between categorization rules. Post hoc t tests
(FDR corrected p values) (Benjamini and Hochberg, 1995) indi-
cated that, for the left fusiform, the amplitude of the response
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significantly differed between rules for the prototype (t5 =
2.97,p = 0.01,d = 0.74, CI = [0.02, 0.09]), and for the random
exemplars (t,5 = —2.97, p = 0.02,d = —0.74, CI = [—0.09,
—0.02]), but did not differ for the low distortion exemplars (¢,5) =
0.47, p = 0.65) or for the high distortion exemplars (f,5, =
—1.92, p = 0.1). For the right fusiform, the amplitude signifi-
cantly differed between rules for the prototype (5 = 3.38, p <
0.01, d = 0.84, CI = [0.02, 0.1]), and for the high distortion
exemplars (t,5 = —3.42, p < 0.01,d = —0.85, CI = [—0.12,
—0.03]), but not for the random exemplars (t,5) = —2.26, p =
0.05) or the low distortion exemplars (t.,5, = 0.3, p = 0.77).

Strict versus lax

To compare differences between the rules, we compared all cor-
rect lax trials with all correct strict trials (regardless of their dis-
tances from the category boundary or from the prototype). We
found that a region in superior bank of the posterior intraparietal
sulcus (Fig. 5; spatial extent 305 voxels, coordinates of voxel with
maximal ¢ value: x = —18, y = —70, z = 52) showed greater
activity when subjects categorized according to the lax categori-
zation rule than according to the strict categorization rule. No
regions showed greater activity for the strict rule than for the lax
rule.

MVPA

To investigate multivariate representations associated with deci-
sional and perceptual factors, we conducted several multivariate
pattern analyses. We first used SVR, in conjunction with a search-
light approach (described above) to localize neighborhoods of
voxels representing relevant information. We were able to decode
information related to distance from the decision bound from
several frontoparietal regions, including bilateral superior and
inferior parietal regions (neighboring the intraparietal sulcus),
and right middle frontal cortex (illustrated in Fig. 6A; Table 2).
Representations associated with distance from the prototype (il-
lustrated in Fig. 6B; Table 2) were primarily restricted to visual
regions (bilateral lingual gyri and ventral temporal lobe extend-
ing to the calcarine sulcus and extrastriate cortex), and small
bilateral regions of the superior parietal lobe/precuneus, which
overlapped both with regions representing distance from the de-
cision bound (Fig. 3) and with the contrast of lax > strict (Fig. 5).
For each resultant ROI, we then performed permutation tests (as
described above) to confirm that information was represented at
the ROI level (rather than only at the searchlight level) (Etzel et
al., 2013), and to confirm the representations were decodable
within each rule. To perform the permutation tests, we trained
each model using trials from both rules, but, for each cross-
validation fold, tested the model separately for each rule. This
allowed us to train the model using as much data as possible, but
then test each rule separately. The statistical maps shown in Fig-
ure 6 and Table 2 include only ROIs that were significant for these
ROI level permutation tests, and are color-coded to indicate as-
sociation with rule. Finally, to investigate whether the rules
might be represented differently within subregions of the oc-
cipitotemporal ROI, we conducted a searchlight analysis, in
which we sought to decode distortion level separately for each
rule. As we did not find notable regional differences between
rules, we will not discuss this analysis further.

We additionally investigated whether stimulus distortion was
represented in the same way between the two rules. If occipito-
temporal category representations differed between the strict and
lax rules, we would predict that a support vector machine trained
on one rule would have difficulty making predictions concerning
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Distance from the prototype. Activity within bilateral inferior temporal lobe regions neighboring the mid-fusiform sulci positively covaried with distance from the prototype. Although

the ROIs were selected based on their sensitivity to stimulus distortion, a post hoc analysis indicated a significant interaction between distortion level and rule. Significant pairwise t tests: **p << 0.01
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Figure 5.  Categorization rule. Regions of the medial bank of the left posterior intraparietal
sulcus showed greater activity during categorization according to the “lax” rule than the “strict”
rule. Error bars indicate SEM.

the other rule. To test this hypothesis, we conducted four separate
SVR analyses (C = 0.01, with fourfold, leave-one-run-out cross-
validation). On each cross-validation fold, we trained the model
on one rule and then tested it on held-out trials associated with
either the same rule or the other rule. As illustrated in Figure 6D,
this allowed us to investigate how the performance of the model
varied according to how it was trained. For each analysis, we
Fisher z-transformed the resultant Pearson correlation values,
and then performed a paired-samples ¢ test. When trained on the
strict rule, the model performed significantly better when tested
on the strict rule than the lax rule (¢,5, = 5.1, p < 0.01,d = 1.27,
CI = [0.21, 0.5]). When trained on the lax rule, the model per-
formed significantly better when tested on the lax rule than on the
strict rule (t,5, = 4.49, p <0.01,d = 1.12, CI = [0.16, 0.43]). The
models also only performed significantly above chance when
trained and tested on the same rule (trained and tested on the
strict rule: £,5 = 10.13, p < 0.01, d = 2.53, CI = [0.32, 0.49];
trained and tested on the lax rule: ¢,5) = 7.74, p < 0.01,d = 1.94,
CI = [0.25,0.44]) than when trained and tested on different rules
(trained on the strict rule and tested on the lax rule: t,5, = 1.15,

p = 0.27; trained on the lax rule and tested on the strict rule: £,5, =
1.47, p = 0.16). These findings suggest that stimulus distortion
was represented differently between the two rules.

To investigate whether this effect was driven by distance from
the active category boundary, or existed across all levels of stim-
ulus distortion, we sought to distinguish neighboring distortion
levels for each rule separately (Fig. 6E). To do so, we used a linear
support vector classifier (C = 0.01) in conjunction with a four-
fold, leave-one-run-out, cross-validation procedure. First, for
each pairwise test (prototype vs low distortion exemplars, low
distortion exemplars vs high distortion exemplars, and high dis-
tortion exemplars vs random stimuli), we performed a permuta-
tion test (as described in Materials and Methods) to determine
whether each model could successfully classify neighboring
distortion levels. We found that we were able to differentiate
between neighboring distortion levels for both the strict (proto-
type vs low distortion: ,5, = 5.75,p < 0.01,d = 1.44, Cl, (.iisiic) =
[1.11, 2.41]; low distortion vs high distortion: #,5) = 3.84, p <
0.01, d = 0.96, CI, atisticy = [0.58, 2.02]; high distortion vs
random exemplars: #,5) = 3.82, p < 0.01, d = 0.95, Cl, gatistic) =
[0.42,1.47]) and for the lax rule (prototype vs low distortion: t,5) =
3.12,p <0.01,d = 0.83, Cl, yuaistic) = [0.28, 1.28], low distortion
vs high distortion: t,5, = 3.41, p < 0.01, d = 0.85,
Cl(, statisticy = (0.4, 1.75], high distortion vs random exemplars:
ts) = 4.86, p < 0.01,d = 1.22, Cl, yuaisic) = [0.86, 2.21]). To
determine whether the classification accuracy of neighboring dis-
tortion levels interacted with generalization rule, we conducted a
repeated-measures ANOVA with rule, distortion level, and the
interaction between rule and distortion level as factors. We found
that the interaction between rule and distortion level was signif-
icant (F(, 39, = 4.95, p = 0.01, 7> = 0.25), but the main effects of
rule (F; 5 = 1.59, p = 0.23, n*> = 0.1) and distortion level
(F(2,30) = 0.06, p = 0.94) were not. These findings indicate that
the discriminability of stimulus distortion negatively covaried
with distance from the active category boundary.

Discussion

We investigated how perceptual representations interacted with
top-down factors in a task requiring switches between “strict”
and “lax” generalization thresholds. When categorizing accord-
ing to the strict rule, participants had to notice fine-grained
differences between low distortion exemplars and the category
prototype; and when categorizing according to the lax rule, they
had to generalize knowledge to atypical category members. Be-
havioral differences between rules were minimized through pilot



Braunlich et al. ® Occipitotemporal Generalization

A Distance from the Category

Cc ROI D ROI: SVR

s 280

E ROI: SVC

J. Neurosci., August 9, 2017 - 37(32):7631-7642 = 7639

B Distance from the Prototype

F ROI: Univariate

——— Strict —— Lax
— — Lax
o 44 —— Strict
Do
o §.4o
S <
v O .36
]
a
.32

Testing

4 B Strict 64

o B |ax >
2 £ = .60

v 5

© -2 v}
0] 9 .56

a <

A
.52
Strict Lax
Training

Figureé.

PvsL Lvs.H Hvs.R
Distortion Level

prot. low high rand.

Distortion Level

MVPA. A, Regions representing distance from the category boundary (familywise error rate corrected at the voxel level, p << 0.001). B, Regions representing distance from the prototype

(familywise error rate corrected at the voxel level, p << 0.01). Warm colors represent ROls that were significant under only the strict rule. Cool colors represent voxels that were significant under both
rules. €, The occipitotemporal ROl referred to by D—F. D, Within this RO, distortion level could be decoded significantly more accurately when the model was trained (x axis) and tested (bar color)
on the same rule than when it was trained and tested on different rules. E, For each rule, classification accuracy (of neighboring stimulus distortion levels) decreased with distance from the category
boundary. y axis: classification accuracy. x axis: P, Prototype; L, low distortion; H, high distortion; R, random. F, The univariate pattern of the occipitotemporal ROI. This pattern s similar to that shown
in Figure 4, indicating that the multivariate analysis did not select voxels with radically different univariate response properties. Error bars indicate SEM.

Table 2. MVPA: distortion and decision boundary distance”

Size of cluster
Region (voxels) X y V4 Rule®
Distortion
B occipital, lingual gyri, inferior temporal 8408 —12 —98 12 B
L superior parietal/precuneus 361 —10 —-70 58 B
Linferior parietal 76 —58 =32 4 S
R superior parietal/precuneus 116 12 =76 52 S
Linferior frontal gyrus 27 —42 6 28 S
Boundary distance
B intraparietal sulcus, lateral parietal 5701 5 —46 46 B
12 —76 52
—38 —74 40
L middle frontal/precentral 786 —50 8§ 38 B
L lateral occipital/inferior temporal 246 -5 -70 —4 B
R middle frontal 343 28 40 26 B
Linferior frontal 53 —54 28 6 B
Rinferior temporal 40 54 —5 —-12 B
R precentral gyrus 40 44 6 32 B

“Searchlight results using a 10 mm searchlight radius. Linear SVR was used to identify regions sensitive to stimulus
distortion (familywise error rate corrected at the voxel level: p < 0.001) and distance from the decision boundary
(familywise error rate corrected at the voxel level: p << 0.01) across categorization rules. The familywise error rate
was controlled using a nonparametric permutation approach. For each ROI, we additionally conducted permutation
tests for each rule separately to confirm the g lity of the decoded rep ations. ROls that were not significant
for at least one rule were removed from the map. MNI coordinates (x, y, 2) of cluster voxel with highest ¢ value.

bWhether the ROl was significant for both rules (B) o the strict rule only (S); no ROIs were significant for only the lax
rule.

experiments on separate participants, and equivalent stimulus
distributions were used for each task.

Activity within primary and higher-order visual cortices co-
varied with increasing stimulus distortion, whereas activity
within frontoparietal and dorsal attention networks covaried
with decisional demands (distance from the active category
boundary). This pattern can be broadly interpreted as reflecting
neural separation of functionally independent processes, with

higher-order visual cortex transforming stimulus attributes into
an abstract representation of stimulus typicality (i.e., distance
from the category prototype), and frontoparietal and dorsal at-
tention networks applying this visual information flexibly, ac-
cording to current task goals (Gold and Shadlen, 2007; Jiang et al.,
2007; Li et al., 2009; McKee et al., 2014). However, regions that
were most sensitive to stimulus distortion (occipitotemporal cor-
tex) were also sensitive to differences between the categorization
rules (Figs. 5, 6D, 6E), and regions that were strongly sensitive to
decisional factors (precuneus and superior parietal) were also
sensitive to stimulus distortion (Fig. 6B). Interestingly, the slope
of the line relating distance from the prototype to univariate am-
plitude was steeper under the strict rule than the lax rule (Figs. 4,
6F); activity for the prototype was lower under the strict rule than
the lax rule, and activity for the highly distorted and random
exemplars was greater under the lax rule than the strict rule. This
suggests that distance from the active category boundary influ-
enced perceptual processing. The MVPA results support this in-
terpretation, as representations of stimulus distortion differed
between rules (Fig. 6D), and the discriminability of this informa-
tion negatively covaried with distance from the active category
boundary; this means that perceptual attributes of stimuli near
the active category boundary were more easily differentiated than
attributes belonging to stimuli far from the boundary (Fig. 6E).
Contemporary accounts of occipitotemporal function tend to
emphasize its important role in the transformation of high-
dimensional perceptual information into a lower-dimensional
abstract space, where representations are robust to various sources of
perceptual variance (e.g., partial occlusion and changes in position
and size) and where decision-relevant information can be easily
integrated by downstream neurons. For instance, feedforward
neural networks (Riesenhuber and Poggio, 1999; Khaligh-Razavi
and Kriegeskorte, 2014; Yamins et al., 2014; Gii¢lii and van Ger-
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ven, 2015) support this kind of abstraction via a hierarchical
architecture where receptive field sizes increase across successive
layers. Within this framework, switches between strict and lax
generalization thresholds can be implemented in abstract space
by adjusting the threshold of an output unit tuned to the category
prototype, and perceptual representations within lower hierar-
chical layers could thus remain largely insensitive to transient
generalization demands.

In biological visual systems, feedback projections from higher-
order brain regions play an important role in optimizing sensory
computations during transient decisional context (Reynolds and
Chelazzi, 2004; Gilbert and Li, 2013; Lehky and Tanaka, 2016).
Attention, for instance, is known to improve neural sensitivity to
attended stimuli in extrastriate and inferior temporal cortices
(Moran and Desimone, 1985; Reynolds et al., 2000; Zhang et al.,
2011), and inferior temporal representations in both primate (Si-
gala and Logothetis, 2002; Freedman et al., 2003; Meyers et al.,
2008) and human (Li et al., 2007) similarly covary with their
behavioral significance. With regards to the current experiment,
one possibility is that top-down signals may have supported a
mnemonic representation of the prototype, against which in-
coming sensory information could be compared (Summerfield et
al., 2006; Sugase-Miyamoto et al.,, 2008; Myers et al., 2015).
Within the predictive coding framework (Rao and Ballard, 1999;
Friston, 2005; Rao, 2005), similar signals represent contextually
sensitive predictions for activity within lower hierarchical levels
and only unpredicted information is propagated to higher-order
brain regions. This reduces the transfer of redundant information
and provides an important learning signal to higher-order regions.
Additionally, as the univariate signal can be conceptualized as
reflecting the difference between the expected (statistically, the
category centroid/prototype was the most-likely percept) and the
observed stimuli (Murray et al., 2002; Summerfield et al., 2008;
Auksztulewicz and Friston, 2016), the predictive coding frame-
work provides a compelling account for the typicality-driven ef-
fect illustrated in Figures 4 and 6F (Vuilleumier et al., 2002;
Chouinard et al., 2008).

Although top-down anticipatory signals can support the
transformation of high-dimensional sensory information into a
lower-dimensional space, where decision-relevant information
can be easily integrated by downstream neurons (Sugase-Miyamoto
et al., 2008; Myers et al., 2015), they do not easily account for the
observed differences between rules. As differences in psycholog-
ical representation can alter neural similarity gradients (Davis
and Poldrack, 2014), and as the strict rule required participants to
notice fine-grained perceptual details, but the lax rule did not,
one possibility is that the prototype may have been represented
with greater mnemonic precision (Ma et al., 2014) under the
strict rule. This would predict that occipitotemporal representa-
tions should be more sensitive to stimulus distortion under the
strict rule than the lax rule. Although we did find that the slope of
the line relating distance from the prototype to univariate ampli-
tude was steeper under the strict rule (Figs. 4, 6F ), this hypothesis
provides an incomplete account of our results, as distortion level
could be decoded from each rule separately (Fig. 6D), and the
discriminability of this information increased as distance from
the active category boundary decreased (Fig. 6E).

As the stimuli used in the current study were selected from
spheres surrounding the category prototype, it was impossible to
perform the task by learning simple linear or unidimensional
category boundaries in perceptual space. Instead, participants
were required to compare incoming sensory information with a
mnemonic representation of the prototype, and to place category
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boundaries within this abstract similarity space. As the discrim-
inability of stimulus distortion negatively covaried with distance
from the active category boundary, our findings imply that per-
ceptual processes were influenced by decisional uncertainty. Our
findings are therefore consistent with theories wherein low level
sensory processes first convey coarse resolution information and
fine-grained perceptual processes are then guided by top-down
attentional signals (e.g., Hochstein and Ahissar, 2002). They are
also consistent with Bayesian frameworks wherein perceptual
processing can be described as a series of mutually informative
interactions between top-down and bottom-up signals (Lee and
Mumford, 2003; Friston, 2005), and with experimental results
indicating that the time course of neural representation often
proceeds from coarse-to-fine resolution (Sugase et al.,, 1999;
Hegdé, 2008; Goffaux et al., 2011). Although trial-wise effects
reflecting ad hoc decisional factors may be present in many neu-
roimaging results, it should be noted that not all category struc-
tures influence perceptual representation (Folstein et al., 2012);
and we encourage the reader to be cautious when interpreting the
results of any single fMRI study, particularly when sample size is
small.

Although previous studies of A/notA categorization focused
on low level occipital regions (Reber et al., 1998; Aizenstein et al.,
2000) (e.g., V1 and V2), we identified univariate signals related to
distance from the prototype in the bilateral fusiform. Our ap-
proach, however, differed in several ways: we used polygonal
stimuli rather than dot patterns, primarily parametric analyses
(tracking distance from the prototype, and distance from the
category boundary) rather than analyses based on pairwise con-
trasts between conditions, supervised training via trial and error
rather than observation (unsupervised learning), and used a lon-
ger training period. Because discriminability of relevant stimulus
dimensions may emerge with category training (Folstein et al.,
2013), this last factor may have been particularly important.

In conclusion, category learning allows us to make sense of the
external world by assigning common meaning to perceptually
distinct stimuli. Frontoparietal regions represent abstract cate-
gory signals more strongly, but representations within sensory
cortices are also modulated by these factors (Freedman et al.,
2003; Meyers et al., 2008). Neural representations of perceptual
dimensions that predict category membership are often more
discriminable than dimensions that do not (Sigala and Logothe-
tis, 2002; Li et al., 2007; De Baene et al., 2008; Folstein et al., 2013).
Similarly, category training selectively facilitates perceptual dis-
crimination of behaviorally relevant dimensions (Goldstone,
1994; Op de Beeck et al., 2003; Gureckis and Goldstone, 2008;
Folstein et al., 2012), particularly for perceptual values neighbor-
ing active category boundaries (Goldstone et al., 1996). Thus,
categorization is often described as “stretching” perceptual space
to accentuate differences between categories while “compress-
ing” perceptual space to minimize differences within categories.

Instead of investigating how occipitotemporal representa-
tions were modulated by differences in category structure, we
investigated how they were modulated by differences in general-
ization strategy. We found that representations of equivalent
stimuli differed between “strict” and “lax” generalization rules,
and that the discriminability of stimulus distortion negatively
covaried with distance from the active category boundary. Thus,
occipitotemporal representations were sensitive not only to
learned category structure, but were flexibly modulated via interac-
tions with abstract decisional factors. This implies that decisional
uncertainty can “stretch” occipitotemporal representations to im-
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prove classification of stimuli neighboring abstract category
boundaries.

References

Abraham A, Pedregosa F, Eickenberg M, Gervais P, Mueller A, Kossaifi J,
Varoquaux G (2014) Machine learning for neuroimaging with Scikit-
Learn. Front Neuroinform 8:1-15. CrossRef Medline

Aizenstein HJ, MacDonald AW, Stenger VA, Nebes RD, Larson JK, Ursu S,
Carter CS (2000) Complementary category learning systems identified
using event-related functional MRI. J Cogn Neurosci 12:977-987. CrossRef
Medline

Ashby FG, O’Brien JB (2005) Category learning and multiple memory sys-
tems. Trends Cogn Sci 9:83—89. CrossRef Medline

Auksztulewicz R, Friston K (2016) Repetition suppression and its contex-
tual determinants in predictive coding. Cortex 80:125-140. CrossRef
Medline

Benjamini Y, HochbergY (1995) Controlling the false discovery rate: a practical
and powerful approach to multiple testing. J R Stat Soc B 57:289-300.

Bozoki A, Grossman M, Smith EE (2006) Can patients with Alzheimer’s disease
learn a category implicitly? Neuropsychologia 44:816—827. CrossRef
Medline

Braunlich K, Seger CA (2016) Categorical evidence, confidence, and urgency
during probabilistic categorization. Neuroimage 125:941-952. CrossRef
Medline

Casale MB, Ashby FG (2008) A role for the perceptual representation memory
system in category learning. Percept Psychophys 70:983-999. CrossRef
Medline

Chouinard PA, Morrissey BF, Kohler S, Goodale MA (2008) Repetition
suppression in occipital-temporal visual areas is modulated by physical
rather than semantic features of objects. Neuroimage 41:130—144. CrossRef
Medline

Chumbley JR, Flandin G, Bach DR, Daunizeau J, Fehr E, Dolan RJ, Friston KJ
(2012) Learning and generalization under ambiguity: an fMRI study.
PLoS Comput Biol 8:€1002346. CrossRef Medline

Collins AG, Frank MJ (2013) Cognitive control over learning: creating,
clustering, and generalizing task-set structure. Psychol Rev 120:190-229.
CrossRef Medline

Davis T, Poldrack RA (2014) Quantifying the internal structure of catego-
ries using a neural typicality measure. Cereb Cortex 24:1720-1737.
CrossRef Medline

Davis T, Love BC, Preston AR (2012) Striatal and hippocampal entropy and
recognition signals in category learning: simultaneous processes revealed
by model-based fMRI. J Exp Psychol Learn Mem Cogn 38:821-839.
CrossRef Medline

De Baene W, Ons B, Wagemans J, Vogels R (2008) Effects of category learn-
ing on the stimulus selectivity of macaque inferior temporal neurons.
Learn Mem 15:717-727. CrossRef Medline

Eklund A, Dufort P, Villani M, Laconte S (2014) BROCCOLI: Software for
fast fMRI analysis on many-core CPUs and GPUs. Front Neuroinform
8:24. CrossRef Medline

Eklund A, Nichols TE, Knutsson H (2016) Cluster failure: why fMRI infer-
ences for spatial extent have inflated false-positive rates. Proc Natl Acad
Sci U S A 113:7900-7905. CrossRef Medline

Etzel JA, Zacks JM, Braver TS (2013) Searchlight analysis: promise, pitfalls,
and potential. Neuroimage 78C:261-269. CrossRef Medline

Folstein JR, Gauthier I, Palmeri TJ (2012) How category learning affects
object representations: not all morphspaces stretch alike. ] Exp Psychol
Learn Mem Cogn 38:807—820. CrossRef Medline

Folstein JR, Palmeri TJ, Gauthier I (2013) Category learning increases dis-
criminability of relevant object dimensions in visual cortex. Cereb Cortex
23:814—823. CrossRef Medline

Freedman DJ, Riesenhuber M, Poggio T, Miller EK (2003) A comparison of
primate prefrontal and inferior temporal cortices during visual categori-
zation. ] Neurosci 23:5235-5246. Medline

Friston KJ (2005) A theory of cortical responses. Philos Trans R Soc B 360:
815-836. CrossRef Medline

Friston KJ, Rotshtein P, Geng J], Sterzer P, Henson RN (2006) A critique of
functional localisers. Neuroimage 30:1077-1087. CrossRef Medline

Gilbert CD, Li W (2013) Top-down influences on visual processing. Nat
Rev Neurosci 14:350-363. CrossRef Medline

Glass BD, Chotibut T, Pacheco J, Schnyer DM, Maddox WT (2012) Normal

J. Neurosci., August 9, 2017 - 37(32):7631-7642 « 7641

aging and the dissociable prototype learning systems. Psychol Aging 27:
120-128. CrossRef Medline

Goffaux V, Peters J, Haubrechts J, Schiltz C, Jansma B, Goebel R (2011)
From coarse to fine? Spatial and temporal dynamics of cortical face pro-
cessing. Cereb Cortex 21:467-476. CrossRef Medline

GoldJI, Shadlen MN (2007) The neural basis of decision making. Annu Rev
Neurosci 30:535-574. CrossRef Medline

Goldstone R (1994) Influences of categorization on perceptual discrimina-
tion. J Exp Psychol Gen 123:178-200. CrossRef Medline

Goldstone RL, Steyvers M, Larimer K (1996) Categorical perception of
novel dimensions. In: Proceedings of the eighteenth annual conference of
the Cognitive Science Society, pp 243-248.

Grinband J, Hirsch ], Ferrera VP (2006) A neural representation of catego-
rization uncertainty in the human brain. Neuron 49:757-763. CrossRef
Medline

Grinband J, Wager TD, Lindquist M, Ferrera VP, Hirsch ] (2008) Detection
of time-varying signals in event-related fMRI designs. Neuroimage 43:
509-520. CrossRef Medline

Giiglii U, van Gerven MA (2015) Deep neural networks reveal a gradient in
the complexity of neural representations across the ventral stream. ] Neu-
rosci 35:10005-10014. CrossRef Medline

Gureckis TM, Goldstone RL (2008) The effect of the internal structure of
categories on perception. Proceedings of the 30th Annual Conference of
the Cognitive Science Society, pp 1876-1881.

Hegdé ] (2008) Time course of visual perception: coarse-to-fine processing
and beyond. Prog Neurobiol 84:405-439. CrossRef Medline

Henson RN (2003) Neuroimaging studies of priming. Prog Neurobiol 70:
53—81. CrossRef Medline

Hochstein S, Ahissar M (2002) View from the top: hierarchies and reverse
hierarchies in the visual system. Neuron 36:791-804. CrossRef Medline

Homa D, Sterling S, Trepel L (1981) Limitations of exemplar-based gener-
alization and the abstraction of categorical information. J Exp Psychol
Hum Learn Mem 7:418-439. CrossRef

Jiang X, Bradley E, Rini RA, Zeffiro T, VanMeter ], Riesenhuber M (2007)
Categorization training results in shape- and category-selective human
neural plasticity. Neuron 53:891-903. CrossRef Medline

Kayser AS, Buchsbaum BR, Erickson DT, D’Esposito M (2010) The func-
tional anatomy of a perceptual decision in the human brain. J Neuro-
physiol 103:1179-1194. CrossRef Medline

Khaligh-Razavi SM, Kriegeskorte N (2014) Deep supervised, but not unsu-
pervised, models may explain IT cortical representation. PLoS Comput
Biol 10:€1003915. CrossRef Medline

Knowlton BJ, Squire LR (1993) The learning of categories: parallel brain
systems for item memory and category knowledge. Science 262:1747—
1749. CrossRef Medline

Koutstaal W, Wagner AD, Rotte M, Maril A, Buckner RL, Schacter DL
(2001) Perceptual specificity in visual object priming: functional mag-
netic resonance imaging evidence for a laterality difference in fusiform
cortex. Neuropsychologia 39:184—199. CrossRef Medline

Kriegeskorte N, Goebel R, Bandettini P (2006) Information-based func-
tional brain mapping. Proc Natl Acad Sci U S A 103:3863-3868. CrossRef
Medline

Kriegeskorte N, Simmons WK, Bellgowan PS, Baker CI (2009) Circular
analysis in systems neuroscience: the dangers of double dipping. Nat Neu-
rosci 12:535-540. CrossRef Medline

Lee TS, Mumford D (2003) Hierarchical Bayesian inference in the visual
cortex. ] Opt Soc Am A Opt Image Sci Vis 20:1434-1448. CrossRef
Medline

Lehky SR, Tanaka K (2016) Neural representation for object recognition in
inferotemporal cortex. Curr Opin Neurobiol 37:23-35. CrossRef Medline

Li S, Ostwald D, Giese M, Kourtzi Z (2007) Flexible coding for categorical
decisions in the human brain. J Neurosci 27:12321-12330. CrossRef
Medline

Li S, Mayhew SD, Kourtzi Z (2009) Learning shapes the representation of
behavioral choice in the human brain. Neuron 62:441-452. CrossRef
Medline

Ma W], Husain M, Bays PM (2014) Changing concepts of working memory.
Nat Neurosci 17:347-356. CrossRef Medline

McKee JL, Riesenhuber M, Miller EK, Freedman DJ (2014) Task depen-
dence of visual and category representations in prefrontal and inferior
temporal cortices. ] Neurosci 34:16065-16075. CrossRef Medline

Meyers EM, Freedman D], Kreiman G, Miller EK, Poggio T (2008) Dynamic


http://dx.doi.org/10.3389/fninf.2014.00014
http://www.ncbi.nlm.nih.gov/pubmed/24600388
http://dx.doi.org/10.1162/08989290051137512
http://www.ncbi.nlm.nih.gov/pubmed/11177418
http://dx.doi.org/10.1016/j.tics.2004.12.003
http://www.ncbi.nlm.nih.gov/pubmed/15668101
http://dx.doi.org/10.1016/j.cortex.2015.11.024
http://www.ncbi.nlm.nih.gov/pubmed/26861557
http://dx.doi.org/10.1016/j.neuropsychologia.2005.08.001
http://www.ncbi.nlm.nih.gov/pubmed/16229868
http://dx.doi.org/10.1016/j.neuroimage.2015.11.011
http://www.ncbi.nlm.nih.gov/pubmed/26564532
http://dx.doi.org/10.3758/PP.70.6.983
http://www.ncbi.nlm.nih.gov/pubmed/18717385
http://dx.doi.org/10.1016/j.neuroimage.2008.02.011
http://www.ncbi.nlm.nih.gov/pubmed/18375148
http://dx.doi.org/10.1371/journal.pcbi.1002346
http://www.ncbi.nlm.nih.gov/pubmed/22629235
http://dx.doi.org/10.1037/a0030852
http://www.ncbi.nlm.nih.gov/pubmed/23356780
http://dx.doi.org/10.1093/cercor/bht014
http://www.ncbi.nlm.nih.gov/pubmed/23442348
http://dx.doi.org/10.1037/a0027865
http://www.ncbi.nlm.nih.gov/pubmed/22746951
http://dx.doi.org/10.1101/lm.1040508
http://www.ncbi.nlm.nih.gov/pubmed/18772261
http://dx.doi.org/10.3389/fninf.2014.00024
http://www.ncbi.nlm.nih.gov/pubmed/24672471
http://dx.doi.org/10.1073/pnas.1602413113
http://www.ncbi.nlm.nih.gov/pubmed/27357684
http://dx.doi.org/10.1016/j.neuroimage.2013.03.041
http://www.ncbi.nlm.nih.gov/pubmed/23558106
http://dx.doi.org/10.1037/a0025836
http://www.ncbi.nlm.nih.gov/pubmed/22746950
http://dx.doi.org/10.1093/cercor/bhs067
http://www.ncbi.nlm.nih.gov/pubmed/22490547
http://www.ncbi.nlm.nih.gov/pubmed/12832548
http://dx.doi.org/10.1098/rstb.2005.1622
http://www.ncbi.nlm.nih.gov/pubmed/15937014
http://dx.doi.org/10.1016/j.neuroimage.2005.08.012
http://www.ncbi.nlm.nih.gov/pubmed/16635579
http://dx.doi.org/10.1038/nrn3476
http://www.ncbi.nlm.nih.gov/pubmed/23595013
http://dx.doi.org/10.1037/a0024971
http://www.ncbi.nlm.nih.gov/pubmed/21875215
http://dx.doi.org/10.1093/cercor/bhq112
http://www.ncbi.nlm.nih.gov/pubmed/20576927
http://dx.doi.org/10.1146/annurev.neuro.29.051605.113038
http://www.ncbi.nlm.nih.gov/pubmed/17600525
http://dx.doi.org/10.1037/0096-3445.123.2.178
http://www.ncbi.nlm.nih.gov/pubmed/8014612
http://dx.doi.org/10.1016/j.neuron.2006.01.032
http://www.ncbi.nlm.nih.gov/pubmed/16504950
http://dx.doi.org/10.1016/j.neuroimage.2008.07.065
http://www.ncbi.nlm.nih.gov/pubmed/18775784
http://dx.doi.org/10.1523/JNEUROSCI.5023-14.2015
http://www.ncbi.nlm.nih.gov/pubmed/26157000
http://dx.doi.org/10.1016/j.pneurobio.2007.09.001
http://www.ncbi.nlm.nih.gov/pubmed/17976895
http://dx.doi.org/10.1016/S0301-0082(03)00086-8
http://www.ncbi.nlm.nih.gov/pubmed/12927334
http://dx.doi.org/10.1016/S0896-6273(02)01091-7
http://www.ncbi.nlm.nih.gov/pubmed/12467584
http://dx.doi.org/10.1037/0278-7393.7.6.418
http://dx.doi.org/10.1016/j.neuron.2007.02.015
http://www.ncbi.nlm.nih.gov/pubmed/17359923
http://dx.doi.org/10.1152/jn.00364.2009
http://www.ncbi.nlm.nih.gov/pubmed/20032247
http://dx.doi.org/10.1371/journal.pcbi.1003915
http://www.ncbi.nlm.nih.gov/pubmed/25375136
http://dx.doi.org/10.1126/science.8259522
http://www.ncbi.nlm.nih.gov/pubmed/8259522
http://dx.doi.org/10.1016/S0028-3932(00)00087-7
http://www.ncbi.nlm.nih.gov/pubmed/11163375
http://dx.doi.org/10.1073/pnas.0600244103
http://www.ncbi.nlm.nih.gov/pubmed/16537458
http://dx.doi.org/10.1038/nn.2303
http://www.ncbi.nlm.nih.gov/pubmed/19396166
http://dx.doi.org/10.1364/JOSAA.20.001434
http://www.ncbi.nlm.nih.gov/pubmed/12868647
http://dx.doi.org/10.1016/j.conb.2015.12.001
http://www.ncbi.nlm.nih.gov/pubmed/26771242
http://dx.doi.org/10.1523/JNEUROSCI.3795-07.2007
http://www.ncbi.nlm.nih.gov/pubmed/17989296
http://dx.doi.org/10.1016/j.neuron.2009.03.016
http://www.ncbi.nlm.nih.gov/pubmed/19447098
http://dx.doi.org/10.1038/nn.3655
http://www.ncbi.nlm.nih.gov/pubmed/24569831
http://dx.doi.org/10.1523/JNEUROSCI.1660-14.2014
http://www.ncbi.nlm.nih.gov/pubmed/25429147

7642 - ). Neurosci., August 9, 2017 - 37(32):7631-7642

population coding of category information in inferior temporal and pre-
frontal cortex. ] Neurophysiol 100:1407—1419. CrossRef Medline

Moran J, Desimone R (1985) Selective attention gates visual processing in
the extrastriate cortex. Science 229:782-784. CrossRef Medline

Mumford JA, Turner BO, Ashby FG, Poldrack RA (2012) Deconvolving
BOLD activation in event-related designs for multivoxel pattern classifi-
cation analyses. Neuroimage 59:2636-2643. CrossRef Medline

Murray SO, Kersten D, Olshausen BA, Schrater P, Woods DL (2002) Shape
perception reduces activity in human primary visual cortex. Proc Natl
Acad Sci U S A 99:15164-15169. CrossRef Medline

Myers NE, Rohenkohl G, Wyart V, Woolrich MW, Nobre AC, Stokes MG
(2015) Testing sensory evidence against mnemonic templates. eLife 4:1—
25. CrossRef Medline

Norman KA, O’Reilly RC (2003) Modeling hippocampal and neocortical
contributions to recognition memory: a complementary-learning-
systems approach. Psychol Rev 110:611-646. CrossRef Medline

Nosofsky RM, Little DR, James TW (2012) Activation in the neural network
responsible for categorization and recognition reflects parameter changes.
Proc Natl Acad Sci U S A 109:333-338. CrossRef Medline

Op de Beeck H, WagemansJ, Vogels R (2003) The effect of category learning
on the representation of shape: dimensions can be biased but not differ-
entiated. ] Exp Psychol Gen 132:491-511. CrossRef Medline

Paul EJ, Smith JD, Valentin VV, Turner BO, Barbey AK, Ashby FG (2015)
Neural networks underlying the metacognitive uncertainty response.
Cortex 71:306—322. CrossRef Medline

Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O,
Vanderplas J (2011) Scikit-learn: machine learning in Python. ] Ma-
chine Learn Res 12:2825-2830.

Posner MI, Goldsmith R, Welton KE Jr (1967) Perceived distance and the
classification of distorted patterns. ] Exp Psychol 73:28—-38. CrossRef
Medline

Posner MI, Keele SW (1968) On the genesis of abstract ideas. ] Exp Psychol
77:353-363. CrossRef Medline

Rao RP (2005) Bayesian inference and attentional modulation in the visual
cortex. Neuroreport 16:1843-1848. CrossRef Medline

Rao RP, Ballard DH (1999) Predictive coding in the visual cortex: a func-
tional interpretation of some extra-classical receptive-field effects. Nat
Neurosci 2:79—87. CrossRef Medline

Reber PJ, Squire LR (1999) Intact learning of artificial grammars and intact
category learning by patients with Parkinson’s disease. Behav Neurosci
113:235-242. CrossRef Medline

Reber PJ, Stark CE, Squire LR (1998) Contrasting cortical activity associated
with category memory and recognition memory. Learn Mem 5:420—428.
Medline

Reber PJ, Gitelman DR, Parrish TB, Mesulam MM (2003) Dissociating ex-
plicit and implicit category knowledge with fMRI. ] Cogn Neurosci 15:
574-583. CrossRef Medline

Reynolds JH, Chelazzi L (2004) Attentional modulation of visual process-
ing. Annu Rev Neurosci 27:611-647. CrossRef Medline

Reynolds JH, Pasternak T, Desimone R (2000) Attention increases sensitiv-
ity of V4 neurons. Neuron 26:703-714. CrossRef Medline

Riesenhuber M, Poggio T (1999) Hierarchical models of object recognition
in cortex. Nat Neurosci 2:1019-1025. CrossRef Medline

Roy JE, Riesenhuber M, Poggio T, Miller EK (2010) Prefrontal cortex activ-
ity during flexible categorization. ] Neurosci 30:8519—8528. CrossRef
Medline

Sanders JI, Hangya B, Kepecs A (2016) Signatures of a statistical computa-
tion in the human sense of confidence. Neuron 90:499-506. CrossRef
Medline

Schacter D (1990) Perceptual representation systems and implicit memory
systems. Ann N'Y Acad Sci 608:543-571. CrossRef Medline

Seger CA, Miller EK (2010) Category learning in the brain. Annu Rev Neu-
rosci 33:203-219. CrossRef Medline

Seger CA, Poldrack RA, Prabhakaran V, Zhao M, Glover GH, Gabrieli JD

Braunlich et al. ® Occipitotemporal Generalization

(2000) Hemispheric asymmetries and individual differences in visual
concept learning as measured by functional MRI. Neuropsychologia 38:
1316-1324. CrossRef Medline

Seger CA, Dennison CS, Lopez-Paniagua D, Peterson EJ, Roark AA (2011)
Dissociating hippocampal and basal ganglia contributions to category
learning using stimulus novelty and subjective judgments. Neuroimage
55:1739-1753. CrossRef Medline

Seger CA, Braunlich K, Wehe HS, Liu Z (2015) Generalization in category
learning: the roles of representational and decisional uncertainty. ] Neu-
rosci 35:8802—8812. CrossRef Medline

Sigala N, Logothetis NK (2002) Visual categorization shapes feature selec-
tivity in the primate temporal cortex. Nature 415:318-320. CrossRef
Medline

Smith JD, Minda JP (2001) Journey to the center of the category: the disso-
ciation in amnesia between categorization and recognition. ] Exp Psychol
Learn Mem Cogn 27:984-1002. CrossRef Medline

Smith JD, Redford JS, Gent LC, Washburn DA (2005) Visual search and the
collapse of categorization. J Exp Psychol Gen 134:443—460. CrossRef
Medline

Strange BA, Duggins A, Penny W, Dolan R], Friston KJ (2005) Information
theory, novelty and hippocampal responses: unpredicted or unpredict-
able? Neural Netw 18:225-230. CrossRef Medline

Sugase Y, Yamane S, Ueno S, Kawano K (1999) Global and fine information
coded by single neurons in the temporal visual cortex. Nature 400:869—
873. CrossRef Medline

Sugase-Miyamoto Y, Liu Z, Wiener MC, Optican LM, Richmond BJ (2008)
Short-term memory trace in rapidly adapting synapses of inferior tempo-
ral cortex. PLoS Comput Biol 4:e1000073. CrossRef Medline

Summerfield C, Koechlin E (2008) A neural representation of prior informa-
tion during perceptual inference. Neuron 59:336-347. CrossRef Medline

Summerfield C, Egner T, Greene M, Koechlin E, Mangels J, Hirsch ] (2006)
Predictive codes for forthcoming perception in the frontal cortex. Science
314:1311-1314. CrossRef Medline

Summerfield C, Trittschuh EH, Monti JM, Mesulam MM, Egner T (2008)
Neural repetition suppression reflects fulfilled perceptual expectations.
Nat Neurosci 11:1004—1006. CrossRef Medline

Todd MT, Nystrom LE, Cohen JD (2013) Confounds in multivariate pat-
tern analysis: theory and rule representation case study. Neuroimage 77:
157-165. CrossRef Medline

Vuilleumier P, Henson RN, Driver J, Dolan RJ (2002) Multiple levels of
visual object constancy revealed by event-related fMRI of repetition prim-
ing. Nat Neurosci 5:491-499. CrossRef Medline

Wager TD, Vazquez A, Hernandez L, Noll DC (2005) Accounting for non-
linear BOLD effects in fMRI: parameter estimates and a model for predic-
tion in rapid event-related studies. Neuroimage 25:206—218. CrossRef
Medline

White CN, Mumford JA, Poldrack RA (2012) Perceptual criteria in the hu-
man brain. ] Neurosci 32:16716—-16724. CrossRef Medline

Wiggs CL, Martin A (1998) Properties and mechanics of perceptual prim-
ing. Curr Opin Neurobiol 8:227-233. CrossRef Medline

Yamins DL, Hong H, Cadieu CF, Solomon EA, Seibert D, DiCarlo JJ (2014)
Performance-optimized hierarchical models predict neural responses in
higher visual cortex. Proc Natl Acad Sci U S A 111:8619-8624. CrossRef
Medline

Zaki SR, Nosofsky RM, Jessup NM, Unverzagt FW (2003) Categorization
and recognition performance of a memory-impaired group: evidence for
single-system models. J Int Neuropsychol Soc 9:394—406. CrossRef
Medline

Zeithamova D, Maddox WT, Schnyer DM (2008) Dissociable prototype
learning systems: evidence from brain imaging and behavior. ] Neurosci
28:13194-13201. CrossRef Medline

Zhang Y, Meyers EM, Bichot NP, Serre T, Poggio TA, Desimone R (2011)
Object decoding with attention in inferior temporal cortex. Proc Natl
Acad Sci U S A 108:8850—8855. CrossRef Medline


http://dx.doi.org/10.1152/jn.90248.2008
http://www.ncbi.nlm.nih.gov/pubmed/18562555
http://dx.doi.org/10.1126/science.4023713
http://www.ncbi.nlm.nih.gov/pubmed/4023713
http://dx.doi.org/10.1016/j.neuroimage.2011.08.076
http://www.ncbi.nlm.nih.gov/pubmed/21924359
http://dx.doi.org/10.1073/pnas.192579399
http://www.ncbi.nlm.nih.gov/pubmed/12417754
http://dx.doi.org/10.7554/eLife.09000
http://www.ncbi.nlm.nih.gov/pubmed/26653854
http://dx.doi.org/10.1037/0033-295X.110.4.611
http://www.ncbi.nlm.nih.gov/pubmed/14599236
http://dx.doi.org/10.1073/pnas.1111304109
http://www.ncbi.nlm.nih.gov/pubmed/22184233
http://dx.doi.org/10.1037/0096-3445.132.4.491
http://www.ncbi.nlm.nih.gov/pubmed/14640844
http://dx.doi.org/10.1016/j.cortex.2015.07.028
http://www.ncbi.nlm.nih.gov/pubmed/26291663
http://dx.doi.org/10.1037/h0024135
http://www.ncbi.nlm.nih.gov/pubmed/6047706
http://dx.doi.org/10.1037/h0025953
http://www.ncbi.nlm.nih.gov/pubmed/5665566
http://dx.doi.org/10.1097/01.wnr.0000183900.92901.fc
http://www.ncbi.nlm.nih.gov/pubmed/16237339
http://dx.doi.org/10.1038/4580
http://www.ncbi.nlm.nih.gov/pubmed/10195184
http://dx.doi.org/10.1037/0735-7044.113.2.235
http://www.ncbi.nlm.nih.gov/pubmed/10357448
http://www.ncbi.nlm.nih.gov/pubmed/10489259
http://dx.doi.org/10.1162/089892903321662958
http://www.ncbi.nlm.nih.gov/pubmed/12803968
http://dx.doi.org/10.1146/annurev.neuro.26.041002.131039
http://www.ncbi.nlm.nih.gov/pubmed/15217345
http://dx.doi.org/10.1016/S0896-6273(00)81206-4
http://www.ncbi.nlm.nih.gov/pubmed/10896165
http://dx.doi.org/10.1038/14819
http://www.ncbi.nlm.nih.gov/pubmed/10526343
http://dx.doi.org/10.1523/JNEUROSCI.4837-09.2010
http://www.ncbi.nlm.nih.gov/pubmed/20573899
http://dx.doi.org/10.1016/j.neuron.2016.03.025
http://www.ncbi.nlm.nih.gov/pubmed/27151640
http://dx.doi.org/10.1111/j.1749-6632.1990.tb48909.x
http://www.ncbi.nlm.nih.gov/pubmed/2075961
http://dx.doi.org/10.1146/annurev.neuro.051508.135546
http://www.ncbi.nlm.nih.gov/pubmed/20572771
http://dx.doi.org/10.1016/S0028-3932(00)00014-2
http://www.ncbi.nlm.nih.gov/pubmed/10865107
http://dx.doi.org/10.1016/j.neuroimage.2011.01.026
http://www.ncbi.nlm.nih.gov/pubmed/21255655
http://dx.doi.org/10.1523/JNEUROSCI.0654-15.2015
http://www.ncbi.nlm.nih.gov/pubmed/26063914
http://dx.doi.org/10.1038/415318a
http://www.ncbi.nlm.nih.gov/pubmed/11797008
http://dx.doi.org/10.1037/0278-7393.27.4.984
http://www.ncbi.nlm.nih.gov/pubmed/11486931
http://dx.doi.org/10.1037/0096-3445.134.4.443
http://www.ncbi.nlm.nih.gov/pubmed/16316285
http://dx.doi.org/10.1016/j.neunet.2004.12.004
http://www.ncbi.nlm.nih.gov/pubmed/15896570
http://dx.doi.org/10.1038/23703
http://www.ncbi.nlm.nih.gov/pubmed/10476965
http://dx.doi.org/10.1371/journal.pcbi.1000073
http://www.ncbi.nlm.nih.gov/pubmed/18464917
http://dx.doi.org/10.1016/j.neuron.2008.05.021
http://www.ncbi.nlm.nih.gov/pubmed/18667160
http://dx.doi.org/10.1126/science.1132028
http://www.ncbi.nlm.nih.gov/pubmed/17124325
http://dx.doi.org/10.1038/nn.2163
http://www.ncbi.nlm.nih.gov/pubmed/19160497
http://dx.doi.org/10.1016/j.neuroimage.2013.03.039
http://www.ncbi.nlm.nih.gov/pubmed/23558095
http://dx.doi.org/10.1038/nn839
http://www.ncbi.nlm.nih.gov/pubmed/11967545
http://dx.doi.org/10.1016/j.neuroimage.2004.11.008
http://www.ncbi.nlm.nih.gov/pubmed/15734356
http://dx.doi.org/10.1523/JNEUROSCI.1744-12.2012
http://www.ncbi.nlm.nih.gov/pubmed/23175825
http://dx.doi.org/10.1016/S0959-4388(98)80144-X
http://www.ncbi.nlm.nih.gov/pubmed/9635206
http://dx.doi.org/10.1073/pnas.1403112111
http://www.ncbi.nlm.nih.gov/pubmed/24812127
http://dx.doi.org/10.1017/S1355617703930050
http://www.ncbi.nlm.nih.gov/pubmed/12666764
http://dx.doi.org/10.1523/JNEUROSCI.2915-08.2008
http://www.ncbi.nlm.nih.gov/pubmed/19052210
http://dx.doi.org/10.1073/pnas.1100999108
http://www.ncbi.nlm.nih.gov/pubmed/21555594

	Occipitotemporal Category Representations Are Sensitive to Abstract Category Boundaries Defined by Generalization Demands
	Introduction
	Materials and Methods
	Results
	Discussion
	References


